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Abstract— This paper focuses on heterogeneous-register
architectures with multiple data-memory banks. An evo-
lutionary hybrid is introduced that combines evolutionary
optimization strategies with tree techniques and list sche-
duling. It minimizes the execution time of the final code
by jointly optimizing the schedule, selected instructions, al-
located registers and data memory banks. The core of the
proposed technique is a linear-time algorithm translating ex-
pression trees into optimal straight-line code segments. Ty-
pically, the proposed technique executes an order of magni-
tude faster than pure genetic implementations and achieves
better results than with successively applied greedy techni-
ques for the individual code generation steps. The proposed
technique is well-suited to applications with stringent timing
constraints.

I. INTRODUCTION

Mapping digital signal processing algorithms to optimal
programs for digital signal processors (DSPs) represents
a complex combinatorial optimization problem. Even ve-
ry simple DSP applications result in an extremely large
solution space. Code generation consists of several highly-
interdependent optimization problems which typically be-
long to class NP including operation scheduling, instruction
selection, data register allocation, data memory bank allo-
cation, code compaction, data memory layout generation,
and address register allocation.

Typical DSPs have irregular data paths with different
functional units and dedicated registers. Commonly, da-
ta memory is partitioned into multiple banks to increase
memory bandwidth. Memory accesses may occur in paral-
lel if the referenced variables belong to different memory
banks and the registers involved are allocated according to
a strict set of rules. Traditional compiler techniques can
hardly cope with the irregularities of DSP architectures
[1]. As a consequence, available DSP compilers produce co-
de of unacceptable quality for most real-time applications.
Often, the only alternative is to write programs manually
in assembly code which is both time-consuming and error-
prone.

A large number of signal processing algorithms (e.g. li-
near time-invariant systems) can be specified by directed
acyclic graphs (DAGs). Likewise, basic blocks in high-level
language programs (e.g. C) can be represented by DAGs.
In this paper, we introduce a new technique that translates
DAGs into optimized programs for heterogeneous memory-
register architectures with multiple data memory banks.
Our technique minimizes the execution time of the com-
pacted code by jointly optimizing the schedule, selected in-
structions, and allocated registers and memory banks. The
core of our approach is a linear-time algorithm that trans-
lates expression trees into code segments satisfying a set of
boundary conditions for the tree interface variables. A si-
gnificant advantage of our code generation approach is the
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fact that interdependencies of the code generation phases
are taken into account.

The paper is organized as follows. In section II, there
is a short discussion of related work. An overview of the
proposed technique is given in section III. Section III-A
explains the evolutionary part of the algorithm, sections
ITI-B to III-D cover the deterministic optimization proce-
dures, divided into tree evaluation, loop optimization, and
code compaction. In section IV, experimental results are
discussed.

II. RELATED WORK

Unfortunately, optimal code generation for DAGs is
NP hard even for very simple target architectures [2]. In
contrast, expression trees can be translated into optimal
straight-line programs with linear complexity [3], [4], [5]-
Thus, it seems reasonable to split DAGs into expression
trees and to translate them separately. In a second step,
all trees are translated separately by an optimal tree algo-
rithm. Several techniques have been proposed that aim at
reducing the overall instruction costs for the data trans-
fers between the trees [6], [7], [8]. These techniques have in
common that the value of each tree is always transferred
to memory and there is at most one opportunity for ano-
ther tree to use this value without reloading from memory.
In general, however, further optimization allows more data
transfers to be saved.

A severe drawback of code generation in separate steps
is the fact that all interdependencies of the code generation
phases are neglected. All local optimized code segments are
generated independently and therefore no joint optimiza-
tion of the tree code and the data transfers between these
segments takes place. Both register allocation and memory
bank allocation strongly affect the compaction result and
consequently should not be done in separate steps.

For the specific case of regular data paths, tree pattern
matching has been applied to generate code for data flow
graphs [9]. Recently, two papers on optimized DAG trans-
lation have been published [10], [11]. However, the proce-
dures of both papers only produce straight-line code. Thus,
code compaction has to be performed in a separate step.
Since code compaction strongly depends on register and
memory bank allocation, we believe that the interactions
of these tasks should be taken into account as proposed in
this paper. In [12], an approach is presented that integra-
tes register and memory bank allocation. This algorithm
is based on labeling a constraint graph that represents the
restrictions on register and memory allocation. The algo-
rithm starts by compacting a given symbolic straight-line
code. Constraint graph labeling is performed in a separate
step and therefore register and memory bank allocation is
decoupled from compaction. However, decoupling in gene-
ral adversely affects code quality.



III. PROPOSED TECHNIQUE

The proposed technique starts with splitting the DAG
into maximum-sized expression trees. We ensure that an
optimal program exists for each tree which computes the
respective tree without storing intermediate results in me-
mory. The data transfers between the trees occur via so-
called tree interface variables. These variables may reside
either in registers or memory. The objective of our tech-
nique is to minimize the overall costs for the compacted
program by optimizing variable lifetimes, register alloca-
tion, and memory bank allocation. We propose a genetic
hybrid that combines evolutionary optimization strategies
with optimum tree techniques and greedy heuristics such
as list scheduling. The result is an efficient technique that
executes an order of magnitude faster than a pure genetic
implementation and achieves better results than with suc-
cessively applied greedy techniques for the individual code
generation steps.
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Fig. 1. DFG of a 2nd order state space filter

The examples in the discussion of our genetic hybrid re-
fer to a 2nd order state space filter to be implemented on
Motorola’s DSP56k. The DFG is shown in Fig. 1 and the
set of expressions is listed in Fig. 2 corresponding to five
expression trees T1,7T5,...T5.

Ti:y=z1*xcr+T2oxcg+Txk

To:yy =xy *xc3+x3%xCce +T*xcCy
Ts3:y2s =1 %C5 +Xa%xCg + T *Co
T4: 1 =Y

Ts: 2 = Y2

Fig. 2. Expressions for a 2nd order state space filter

A. Genetic Optimization
A.1 Chromosome Encoding

Each individual consists of a set of trees (in a dedica-
ted order) and a set of tree interface variables. The tree
schedule together with the attributes of the variables form
the chromosome of an individual. The tree schedule can be
expressed as a permutation of n elements where n denotes
the number of trees. Information about access type (load,
store, ...) and register or memory bank are assigned to
each variable and stored in attributes. As shown in Fig. 3,
this information may be displayed in a matrix constituting
the chromosome of an individual. The lifetime periods of
each variable can be derived from this matrix.

TN T, T3 Tp Ts

y | cs
Y1 cs Ir

Yo ca ur
z1 [ lalur|lr|cs

zo [ Ir | Ir | Ir cs
z | la | ua | ur

Fig. 3. Attribute matrix

Each matrix element is encoded by three letters:

e {l|u|c} defines whether the variable is loaded from me-
mory, used from a register, or computed.

o {a|r|s} defines whether the variable remains active in a
register, is released or stored to memory.

o An optional last letter, not shown in Fig. 3, identifies the
register or memory bank.

A.2 Selection

The selection mechanism picks random samples of the
old population to create the next generation. The selection
process is controlled by the fitness value of the individuals,
those with a higher fitness value are more likely to be selec-
ted. Scaling is applied to the fitness values as the differences
between the raw fitness values are too small to establish an
efficient selection mechanism. The range of fitness values
is mapped to the interval from 1 to p. p is called selecti-
on pressure and determines the factor between the scaled
fitness of the best and of the worst individual.

A.3 Crossover

To create a new individual, two individuals are picked at
random from the old population. Their chromosomes are
mixed up by the crossover operator. This operator ensures
that parts of the genetic information of the new individual
are from one ancestor and the rest from the other one. By
doing this, a new chromosome is created which may result
in a better solution (or, as likely, in a worse one, but in
this case the next selection process would weed out such
an individual).

Separate crossover operators are implemented for mo-
difying tree schedules, access types and register /memory
bank assignments. After crossover, it is not guaranteed that
the chromosome corresponds to a valid individual, so a re-
pair algorithm is required to ensure that only valid indivi-
duals are generated.

A.4 Mutation

After an individual has been created and before it is ad-
ded to the new population, a mutation operator is applied
with certain probability. This operator randomly modifies
one of the individual’s attributes.

o Attribute mutation

The attribute mutation operator randomly chooses an ele-
ment of the attribute matrix and modifies the attribute.
The operator takes care that the changes are consistent
and adjusts, if necessary, neighboring attributes. An exam-
ple for attribute mutation is shown in Fig. 4. The attribute
of z in T3 is changed from Ir to la. For consistency, the
attribute of x5 in T5 needs to be adjusted. As a result, the
life period of x5 is extended.



TN T, T; Ty T

y | cs
Y1 cs Ir

Yo ca ur
z1 [ lalur|lr|ecs

zo | la|ur | Ir cs
z | la | ua | ur

Fig. 4. Attribute mutation

o Memory bank mutation

The memory bank for a randomly chosen variable is chan-
ged. This kind of mutation can never be inconsistent.

o Tree schedule mutation

The evaluation order of two consecutive trees may be chan-
ged if no data dependencies are violated. This can be easily
checked in the attribute matrix. An example for tree sche-
dule mutation is given in Fig. 5.

T1 T3 To T4 T5
y | cs
Y1 cs | Ir
Yo ca ur
z1 | la | ur | Ir | ¢s
o [ Ir | Ir | Ir cs
z [ la | ua| ur

Fig. 5. Tree schedule mutation

A.5 Replacement Scheme

The child generation consists only of new items resulting
from the successive application of selection, crossover, and
mutation operators.

Optionally, the best individuals may be automatically
selected into the next generation passing by the random
selection mechanism. This concept is called elitism and it
guarantees that good solutions cannot be lost due to the
following random decisions. On the other hand, there is
a higher risk of saturating at a local minimum too early
when using elitism. However, no performance gain has been
observed by applying elitism.

B. Tree Optimization

The core of the proposed procedure is an algorithm that
takes the interdependencies of instruction selection, regi-
ster allocation, and scheduling into account when trans-
lating expression trees into optimal contiguous sequential
code for heterogeneous memory-register architectures. In
contrast to existing code generation algorithms, our algo-
rithm produces optimal code for expression trees that have
leaves with predefined register assignments [11]. All code
generation constraints for the individual trees are determi-
ned by the columns of the attribute matrix. Specifically,
attributes are assigned to all tree interface nodes (root and
leaves). Attributes determine whether registers for tree in-
terface variables are released or remain active. Active regi-
sters restrict register resources and consequently constrain
tree code generation.

Optimum contiguous code for an expression tree is ge-
nerated by minimizing a cost vector for each node of the

tree. This can be done in linear time by a single bottom-up
traversal of the tree. For each cost vector entry, the opti-
mum instruction together with the order of the operands
and their cost vector indices are stored.Once the cost vec-
tor has been computed for each tree node, an optimum
straight-line code can be emitted by traversing the tree a
second time.

C. Loop Optimization

If assembly code is executed within a time-critical loop,
variables should be kept in registers over the loop bounda-
ries resulting in further savings of instruction cycles. This
is done by modifying the attribute matrix accordingly. Wi-
thout loop optimization, each register content is discarded
the last time it is used and all variables are reloaded in
the next iteration. By enabling loop optimization, registers
maintain their contents after the last tree which may then
be used in the next cycle.

Loop optimization requires modifications in the register
assignment procedure. The same register must be provided
at the beginning of the cycle as well as at the end if a value
should be preserved. This raises boundary conditions which
cannot always be satisfied. Individuals, for which no valid
solution can be found, are assigned a fitness value of 0, so
they do not have any chance to survive.

D. Code Compaction

Code compaction is an important step within DSP as-
sembly code optimization, as the vast majority of DSPs
support multiple operations to be executed simultaneous-
ly. As an example, Motorola’s DSP56k family allows to
execute up to two data transfers in parallel to data-path
operations if certain constraints for register and memory
bank assignment are met. This is typical for a broad class
of DSPs.

There are different interdependent phases in the code
generation process which strongly affect code quality:

e« Memory bank selection:

There are instructions which may only be parallelized if the
operands are stored in different memory banks. For typical
DSPs there are two memory banks and load operations
may be executed simultaneously if they do not access the
same bank.

o Register bank selection:

Often, instructions may only be parallelized if certain regi-
ster banks are used which gives some boundary conditions
to the selection of register banks. This is done during the
straight line code generation as well as in the genetic al-
gorithm but always before the code compaction. Thus the
boundary conditions are evaluated after their assignment
and a fitness value is fed back to the genetic algorithm.

o Tree scheduling:

A change in the tree schedule changes data dependencies.
As an example, it may be allowed to load an operand in-
to the source register earlier if there is no other access to
this register in between. Exploiting this fact permits out-
of-order execution of operations which may result in more
compact code.

As all optimization steps are under direct control of the
genetic algorithm, the compaction step is fully integrated
into the rest of the optimization. Thus, phase coupling pro-
blems are mostly avoided.

In [13] several different methods suited for code com-
paction are compared. Most of them are very general but
do not execute in linear time which is required to restrict
the run-times. The list scheduling algorithm, which is a



heuristic derived from a branch and bound algorithm, exe-
cutes in linear time while still achieving good results. The
fact that most current DSPs have only limited parallelism
makes list scheduling a good choice for code compaction.
However, the algorithm has to be modified slightly to fit to
the data dependencies mentioned above.

To apply list scheduling, a dependency graph has to be
built. This is done by the following algorithm:

1. Find all strong dependencies, i.e. for each operation find
the instructions calculating the source operands.

2. Find all weak dependencies, i.e. look for instructions rea-
ding from registers which are overwritten by the current
instruction.

3. Calculate the weight factor for all instructions. The
weight is calculated by counting the number of instructions
which are dependent on the current instruction.

Now the dependency graph is used to generate optimized
parallel assembly instructions. This is done by applying the
following steps:

1. Find and mark all instructions which do not have any
strong dependencies. Weak dependencies are allowed at this
point of time.

2. Sort the marked instructions by descending weight. This
means that the command with the most dependent instruc-
tions is listed first.

3. Use the instruction with maximum weight as the basis
for the current parallel command.

4. Check the remaining instructions and parallelize if weak
dependencies exist only with instructions already selected
for the current parallel command. Of course, parallel execu-
tion of these instructions must be supported by the target
architecture.

5. If all conditions are met, add the instruction to the cur-
rent parallel command. Continue with the previous step for
the next marked instruction.

6. When no more instruction can be parallelized, the cur-
rent multiple command is finished and added to the final
code.

7. Start over at step one and repeat until all sequential
instruction are put into parallel commands.

IV. EXPERIMENTAL RESULTS

Several different DAGs have been processed to obtain a
representative set of experimental results. As an example
for highly optimized code, the program output for a 2nd
order state space filter is shown in Fig. 6 (without genera-
ting code for the address generation units; this is not part
of the paper but can easily be done by applying established
algorithms like in [14]). The calculation was done with a
population of 500 individuals, a selection pressure p = 50,
and over 1500 generations. The result is optimal for the
given problem, as there are 9 distinctive arithmetic ope-
rations which cannot be parallelized any further and one
move instruction which cannot be saved either.

Fig. 7 illustrates the convergence of the algorithm for 100
test runs. The center line corresponds to the best solution
averaged over all test runs, the outer lines show the best
and the worst result achieved. Experimental results show
that the average code size drops exponentially at the be-
ginning of the optimization process, starts saturating after
about 80 iterations, and reaches saturation at about 300
iterations. The average result after 1500 iterations is 10.03
with an optimum solution of 10 assembly instructions. That
is, only 3 out of 100 runs did not reach the optimum.

By choosing other parameter sets for the genetic algo-
rithm, the performance can be tuned. Generally, a larger
population size will always increase the quality of the result

Setup code:
1: move Y:x1,Y0
2:  move Y:x2,A

Loop body:
1: move A,X0 Y:c8,Y1
2: mpy X0,Y1,B X:c7,X0 Y:k,Y1
3: mac Y0,X0,B X:x,X0
4: mac X0,Y1,B  X:c6,X0 A,Y1
5: mpy X0,Y1,B  X:3,X0 B,Y:y
6: mac Y0,X0,B  X:x,X0 Y:cl,Y1
7 mac X0,Y1,B  A,X0 Y:c4,Y1
8: mpy X0,Y1,A  Y:c5,X0
9: mac Y0,X0,A  X:x,X0 Y:c2,Y0
10: mac X0,Y0,A B,Y0

Fig. 6. Compacted code for a 2nd order state space filter
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Fig. 7. Convergence of the evolutionary process

at the cost of a longer run-time. For an unbiased compa-
rison, one has to use the total number of individuals cal-
culated throughout the entire simulation which is done in
Fig. 8.
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Fig. 8. Convergence depending on the number of individuals calcu-
lated for different population sizes

It can be seen that for each number of individuals calcu-
lated, which is equivalent to a certain amount of run-time,
there is exactly one population size producing the best re-
sult. In other words, the population size can be chosen with
respect to the desired quality of the solution. Note that the-
re is a point of saturation when practically all runs reach
the optimum solution. Further enlargement of the popu-
lation will not lead to better performance anymore. This
saturation point is highly problem dependent and may not
be reached at all for large DFGs.

When varying the selection pressure, code quality shows
a local optimum which, however, is not very sharp. There-
fore the choice of the selection pressure is uncritical as long



as the order of magnitude is correct.
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Fig. 9. Code quality depending on the crossover rate

In Fig. 9 the dependency of the compiler performance
on the crossover rate is shown. Higher crossover rates lead
to a better performance. As the algorithm allows several
identical individuals within a population, a crossover rate
of 100% does not necessarily mean that the next genera-
tion contains only new individuals (it is likely that some
individuals are crossed with identical ones). Code quality
improves with higher crossover rates, but also the conver-
gence of the algorithm is significantly faster, if crossover is
enabled.
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Fig. 10. Code quality depending on the mutation rate

Fig. 10 shows the dependency of the overall result on the
mutation rate. It can be seen that higher mutation rates
lead to a better performance with a saturation at about
pm = 0.8. This is significantly more than usual mutation
rates for genetic algorithms. The reason for this behavior is
the complex construction of the chromosome since different
tasks like tree scheduling, access types and register bank
selection have to be mixed. Without a high mutation rate,
too many attributes would be lost forever after the selection
procedure.

A summary of typical results is shown in Fig. 11. Each
group of bars corresponds to a typical DSP problem, mostly
different kinds of 2nd order filters. Within each group, the
optimum solution and the output of the official Motorola
C-compiler are compared to the experimental results of the
proposed technique. As the C-compiler is not able to exploit
the benefits of two separate memory banks, different test
runs have been done.

It can be seen that our technique is always at or close to
the optimum solution when using all optimization techni-
ques. With restriction to a single memory bank and without
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Fig. 11. Comparison of results for different applications

loop optimization, results are still significantly better than
those of the C-compiler. Depending on the problem and on
the degree of optimization, an improvement of a factor 2
to 5 may be achieved compared to the C-compiler.

V. CONCLUSIONS

The proposed technique is well-suited to time-critical
applications. Greedy techniques, as applied in DSP-C-
compilers, produce code that is unacceptable if there are
stringent timing constraints. The procedure discussed in
this paper generates high-quality code that can typically
only be obtained by cumbersome hand-coding.
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