
DSP DATA MEMORY LAYOUTS OPTIMIZED FOR
INTERMEDIATE ADDRESS POINTER UPDATES

Bernhard Wess and Stefan Fröhlich

INTHFT, Vienna University of Technology
Gusshausstrasse 25/389, A-1040 Vienna, Austria
phone: +43 1 58801 38919, fax: +43 1 5870583

email: bwess@email.tuwien.ac.at

ABSTRACT

Dedicated address generation units (AGUs) in modern
digital signal processors (DSPs) support data memory
access by indirect addressing with subsequent address
pointer modification in parallel to other machine opera-
tions. In this paper, we present an integrated data memory
layout and address register assignment optimization pro-
cedure. This technique allows to reduce both execution
time and code size of DSP programs.

Our generic AGU model is consistent with AGUs of
contemporary fixed-point DSPs. It captures important ad-
dressing capabilities of DSPs such as linear addressing,
modulo addressing and auto-modifying within a given
auto-modify range. There is no address computation over-
head if the next address is within the auto-modify range.
We exploit multiple address pointer update opportuni-
ties between data memory accesses. Experimental results
demonstrate that the proposed technique significantly out-
performs existing optimization strategies.

1. INTRODUCTION

Many high-level language compilers for digital signal
processors (DSPs) produce very poor code that is unac-
ceptable with respect to code density and performance
[1]. In most real-time applications the only alterna-
tive is assembly-level programming which is both time-
consuming and error-prone. To overcome this problem,
new code optimization techniques are developed [2, 3, 4].
As compared to compilers for general-purpose computers,
lower compilation speed is acceptable and therefore more
computation-time intensive algorithms may be applied.

One architectural feature that is typical for DSPs is
the dedicated hardware for data memory address compu-
tation. DSPs provide address generation units (AGUs)
which allow to perform indirect address computation in

This work was supported by ÖNB grant 6867 and the Fonds
zur Förderung der wissenschaftlichen Forschung under research grant
P10701-ÖTE.

parallel to the execution of other data path operations. We
present an algorithm that attempts to maximize the benefit
of this architectural feature. In other words, our optimiza-
tion technique tries to minimize the data address compu-
tation overhead in DSP programs. To this end, we con-
struct data memory layouts and assign address registers
such that zero-cost AGU operations are exploited. Our
technique is based on a parameterized AGU model which
is consistent with modern fixed-point DSP architectures.

The paper is organized as follows. In Section 2, we
give a short overview of related work. A generic model of
an address generation unit which captures typical address-
ing capabilities of DSPs is given in Section 3. In Section
4, we introduce our optimization technique based on our
AGU model. Experimental results are presented in Sec-
tion 5 and conclusions are given in Section 6.

2. RELATED WORK

Address assignment for AGUs with a single address reg-
ister (simple offset assignment, SOA) supporting modify
range

���������	�
was first studied by Bartley [5] and Liao [6].

Liao showed that this problem is NP-hard and also pro-
posed a heuristic algorithm for the general offset assign-
ment problem (GOA). Here it is assumed that the AGU
provides any fixed number of address registers. Leupers
[7] refined Liao’s SOA algorithm and proposed a new al-
gorithm for the GOA problem outperforming Liao’s al-
gorithm by 22% on average. An efficient layout gen-
eration algorithm for auto-modify range

����
��

��
is pro-

posed in [8] and address assignment for any symmetric
auto-modify range is investigated in [9]. For the generic
AGU model defined above, optimal memory layout gen-
eration can be formulated as a quadratic assignment prob-
lem (QAP) [10].

Some DSPs support address pointer modifications in
parallel to arithmetic or logic operations even though no
memory access is done. This leads to a larger possible
modify range for the variable coming next in the access se-

quence. None of the previously cited papers exploits this
dynamic modify range. In [11, 12] heuristic data mem-
ory layout generation algorithms are proposed which take
advantage of these additional update opportunities. How-
ever, these techniques use a very restricted AGU model, as
only a limited address pointer update range is supported
and modulo addressing can not be exploited. Although
these algorithms are based on heuristics, their execution
times grow exponentially with the number of program
variables.

3. GENERIC AGU MODEL

Most DSPs include one or more special units that are ded-
icated to address calculation. AGUs can perform opera-
tions without using the data path of the processor. This
allows address calculations to take place in parallel with
arithmetic operations on data.

Most AGUs employ a post-modify scheme, that is, an
increment is added to the index register value after the ad-
dress is used to access data in memory. The most com-
mon increment is plus or minus one. However, the auto-
modify range can often be enlarged by assigning static
values to dedicated registers. Typically, circular buffer
management is supported by modulo addressing where
the selected length register contains the buffer size.

Our generic AGU model provides � index registers
with an auto-modify range

����� ��� �
where � , � , and

�
are any positive integers. For the specific case of auto-
increment/decrement AGU architectures, both

��� �
and��� �

. Typically, a modify range
����
��

��

can be set up in
contemporary DSPs by assigning static values to modify
registers. In general, the parameters

�
and
�

need not be
equal. We can model both linear addressing�
	���
 �
and modulo addressing� ��	�� ����������������� 	 �
 �
with
� ��! ��� �#"$"#" ���&%

.
�

denotes the selected index reg-
ister and

�
the buffer length. We assume that auto-modify

operations can be carried out in parallel to any data-path
operation even if there is no data memory access. That is,
the effective zero-cost modification range for any address
pointer is not constant since it depends on the number of
updates between memory accesses.

4. PROPOSED APPROACH

Let ' be a set of program variables. Each program vari-
able (*) � ' is identified by a unique + ��! � �
 �#"#"$" �-, ' ,.% .

An access sequence / � (10325476 � (8032:936 �$"#"#" � (8032�; <=; 6 is de-
fined by a function>@? ! � �
��$"#"$" �-, / ,A%
 ! � �
��$"#"$" �-, ' ,.% (1)

where
, / , denotes the sequence length. The image > � + � of

any + �B! ���

��$"#"#" �C, / ,A% defines the program variable (D032) 6
on position + in the access sequence.

A memory layout is a permutationE ? ! ���

��$"#"#" �C, ' ,A%
F! ���

��#"$"#" �C, ' ,A% (2)

which assigns addresses to all program variables that ap-
pear in an access sequence / . The image E � + � is the ad-
dress of variable (8) .

We say there is an access transition from program vari-
able (*) to variable (CG if (-G succeeds (*) in / . There are, / ,�� �

access transitions in / which are defined by or-
dered pairs

� + �IH�� with + �IH �J! ���
 �#"$"#" �-, ' ,.% . We define
the distance between any two adjacent program variables(8032) 6 and (8032)LK 476 byM � + �N� E � > � + 	 �-�7� � E � > � + �O�P" (3)

Suppose all variables () � ' of access sequence / �(8032Q4R6 � (8032:936 �#"$"#"	� (8032�; <=; 6 are referenced indirectly by an ad-
dress pointer with auto-modify range

����� ��� �
. Our goal

is to minimize the number of access transitions
� + �SH�� in/ that are outside the auto-modify range, E �:H�� � E � + �UT�! ��� �#"#"$"	���V%

. Let W � + ��XZY be the number of possible
zero-cost address pointer updates between the accesses to(8032) 6 and (8032)LK 476 . We define a cost function � � + � that re-
turns zero if the address pointer can be redirected fromE � > � + �7� to E � > � + 	 �-�O�

with zero-cost operations and one
otherwise. For linear addressing the cost function is de-
fined by

�) �\[Y for
�]��^`_ 2) 6a 2) 6 ^]��

otherwise
(4)

and for modulo addressing

�) �\[Y for
���]^ _ 2) 6 K&ba 2) 6 ^]��

otherwise
(5)

with
�

equal to
, ' , , �c, ' , , or

Y
. The objective function

d � > � E ��� ; <=; ef4g)Lh 4 �i) (6)

gives the number of address pointer reload operations.
Since the problem under discussion has an extremely

large solution space, we make a statistical solution space
exploration. We apply a neighborhood search technique to
generate optimized solutions for the address assignment

problem. By repeatedly moving from the current solution��� to a neighboring solution � ��� � ��� � , a subset of feasi-
ble solutions is explored.

Kirkpatrick [13] proposed to apply simulated anneal-
ing to escape from local minima in the search process. In
contrast to descent strategies, the simulated annealing al-
gorithm may accept neighbors � giving rise to an increase
in the objective function d � � � . The acceptance probability
depends on a control parameter � (temperature) and the
magnitude of the increase � . Our simulated annealing im-
plementation can be stated as follows:

Select randomly an initial solution �
	 ;�
� ��� ���
; /* select initial temperature */������� � ����� ���

; /* select initial number of iterations */

repeat
repeat

randomly select ���! #"$�
	&% ; /* random move */' � �)("*�+%-, ("*�.	&% ;
if
'0/21

then � 	 � � �
else generate random 3 uniformly in 4 1�57698 ;
if 3 / �+:<;>=>? then �.	 � � � ;

until iteration count
�

nrep;�@� ��A�B
�
; /* reduce temperature */������� � �DCEB �<���F� ; /* increase number of iterations */

until stopping condition
�

true;

The parameter � , initialized by the access sequence
length

, / , , is decreased gradually until no changes in the
objective function value occur during a complete cycle of
random moves at constant � . We use a geometric reduc-
tion function G�� where

YIH G H �
. The number of itera-

tions
�@J�KO�

at each temperature varies from temperature to
temperature. The value of

�@J�K3�
is initialized by

 , ' , and
increased geometrically by multiplying by a factor L X �

.
We explore the neighborhood structure

�
by allowing

random transpositions in a given layout E , a permutation
of set M � ! ���

��#"$"#" �C, ' ,A% . Generating optimum memory
layouts in the presence of any fixed number of address
pointers can be regarded as a coloring problem [10]. Here
a color is assigned to each program variable in / repre-
senting the accessing address pointer.

5. EXPERIMENTAL RESULTS

For an unbiased comparison of techniques, we performed
experiments on random access sequences. These se-
quences differ in length, the number of distinct variables,
and the number of additional update opportunities be-
tween the individual accesses. To provide a good basis for
a comparison of the algorithm in [11] and our technique,
sequences with similar characteristics as in [11] have been
chosen. Additionaly, results for sequences with less up-
date opportunities are given.

For our technique, we have selected the parameters

Table 1: 71 steps, 14 variables and 33 accesses.

Algorithm
���������	� ����
��

��

, modulo
���EN �.N �

Sugino et al. [11] 10.0 – –
Proposed 8.5 0 0

Table 2: 113 steps, 23 variables and 53 accesses.

Algorithm
���������	� ����
��

��

, modulo
���EN �.N �

Sugino et al. [11] 22.0 – –
Proposed 20.2 8.2 3.6

Table 3: 145 steps, 32 variables and 75 accesses.

Algorithm
���������	� ����
��

��

, modulo
���EN �.N �

Sugino et al. [11] 34.0 – –
Proposed 33.5 19.5 13.2

Table 4: 183 steps, 40 variables and 93 accesses.

Algorithm
���������	� ����
��

��

, modulo
���EN �.N �

Sugino et al. [11] 38.0 – –
Proposed 37.4 23.5 17.4

Table 5: 298 steps, 64 variables and 159 accesses.

Algorithm
���������	� ����
��

��

, modulo
���EN �.N �

Sugino et al. [11] 85.0 – –
Proposed 84.0 61.7 51.9

such that an optimized solution is generated in approxi-
mately 10 seconds on a Pentium PC. Slightly better solu-
tions can typically be found by performing several restarts
or by spending more time for the calculation. The val-
ues quoted are the average result of 50 iterations on the
same problem. Typically, the deviation is in the range
of +/- 5 %. Our implementation of Sugino’s algorithm
[11] needs significantly more CPU time to generate a so-
lution. Even worse, the complexity of the algorithm is
close to exponential behaviour so that solutions can only
be found within reasonable time for relatively small ex-
amples. Regarding the quality of the solutions found, we
have not been able to observe significant differences be-
tween these algorithms. However, the proposed algorithm
is able to handle more general AGU models and thus is
applicable for a larger class of DSP architectures. The
algorithm is not only suitable for any auto-modify range
(including asymmetric ranges) but also handles modulo-
adressing. As can be seen by Tables 1 to 5, these architec-
tural features allow to drastically reduce addressing costs.
In [11], the mincut-algorithm is applied to handle more
than one address register. However, the CPU times needed
by the mincut algorithm are quite exhaustive specifically
for more than two address pointers. In contrast, integrat-
ing color moves into our simulated annealing implemen-
tation is very simple and causes just a modest increase in
run-time.

6. CONCLUSIONS

The proposed technique can be applied to improve the
quality of high-level language compilers for DSPs or to
support assembly code synthesis by hand. Compared to
existing algorithms, the new technique uses a more gen-
eral AGU model and shows a better run-time behavior.
The simulated annealing parameters can be either cho-
sen to obtain good solutions in short time or high-quality
solutions if longer run-times are acceptable. The pro-
posed technique offers a faster and more flexible approach
to optimized data memory layout generation and address
pointer assignment.

7. REFERENCES

[1] V. Zivojnovic, J. M. Velarde, C. Schläger, and
H. Meyr, “DSPstone: a DSP-oriented benchmark-
ing methodology”, in Proc. 5th Int. Conf. on Signal
Processing Applications & Technology, vol. 1, pp.
715–720, Dallas, October 1994.

[2] P. Marwedel and G. Goossens, Eds., Code Gener-
ation for Embedded Processors, Kluwer Academic
Publishers, 1995.

[3] R. Leupers, Retargetable Code Generation for Digi-
tal Signal Processors, Kluwer Academic Publishers,
1997.

[4] C. Liem, Retargetable Compilers for Embedded
Core Processors, Kluwer Academic Publishers,
1997.

[5] D. H. Bartley, “Optimizing stack frame accesses
for processors with restricted addressing modes”,
Software-Practice and Experience, vol. 22, pp. 101–
110, February 1992.

[6] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and
A. Wang, “Storage assignment to decrease code
size”, in Proc. ACM Conf. on Programming Lan-
guage Design and Implementation, pp. 186–195,
June 1995.

[7] R. Leupers and P. Marwedel, “Algorithms for ad-
dress assignment in DSP code generation”, in
Proc. IEEE Int. Conf. on Computer-Aided Design,
pp. 109–112, San Jose, November 1996.

[8] B. Wess and M. Gotschlich, “Constructing memory
layouts for address generation units supporting off-
set 2 access”, in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, vol. 1, pp. 683–686,
Munich, April 1997.

[9] A. Sudarsanam, S. Liao, and S. Devadas, “Anal-
ysis and evaluation of address arithmetic capabili-
ties in custom DSP architectures”, in Proc. 34th
ACM/IEEE Design Automation Conf., Anaheim,
June 1997.

[10] B. Wess and M. Gotschlich, “Optimal DSP memory
layout generation as a quadratic assignment prob-
lem”, in Proc. IEEE Int. Symp. on Circuits and Sys-
tems, vol. 3, pp. 1712–1715, Hong Kong, June 1997.

[11] N. Sugino and A. Nishihara, “Memory allocation
methods for a DSP with indirect addressing modes
and their application to compilers”, in Proc. IEEE
Int. Symp. on Circuits and Systems, vol. 4, pp. 2585–
2588, Hong Kong, June 1997.

[12] N. Kogure, N. Sugino, and A. Nishihara, “Memory
address allocation method for a DSP with �

up-

date operations in indirect addressing”, in Proc. Eu-
rop. Conf. on Circuit Theory and Design, Budapest,
September 1997.

[13] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi,
“Optimization by simulated annealing”, Science,
vol. 220, pp. 671–680, May 1983.

